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Abstract—The interzone temperature profile estimation (ITPE) procedure is used to find two-dimensional
analytical series solutions for the time-varying heat transfer between ground and slab-on-grade floors or
basements. The undisturbed soil temperature is approximated as a sinusoidal function of time and the
ITPE procedure is coupled with the complex temperature technique to derive the steady-periodic solutions
for both configurations. The influence of insulation and of a fixed-temperature water table on the temporal
behavior of slab-on-grade floors and basements is treated analytically for the first time,

1. INTRODUCTION

I~ rEF. [1], the temperature variation in the soil was
analyzed when steady-state conditions were assumed.
In this paper, another key parameter will be included
in the formulation of the ground-coupling problems
treated in ref. [1]. This key parameter is time. In fact,
even though the building and water table tem-
peratures are generally constant, the soil temperature
varies significantly with time. As analyzed in refs. [2-
5], the earth temperature variation with time can be
closely approximated by a sinusoidal function at any
below-grade depth. The obvious consequence of this
temperature fluctuation is to complicate the heat flow
direction from the ground-coupled structure since,
depending on time and location, the soil surface can
be warmer or colder than the building interior. The
disturbance in the earth temperature introduced by a
structure reaches a steady-periodic behavior after a
few months from the date when the structure is built
[6]. These first months constitute the ‘transient’ period
of the building. The length of the transient period
depends on many factors such as the size, mass and
insulation of the building. The steady-periodic
behavior is characterized by sinusoidal time variation
of earth temperature and heat fluxes. In this paper, the
steady-periodic behavior will be analyzed for annual
fluctuations. However, the theory can be applied for
any other period of time.

Over a dozen methods for calculating heat transfer
between buildings and ground are now available and
have been reviewed by Sterling and Meixel {7} and
Claridge [8]. Virtually all of these methods are based
on large computer programs using numerical tech-
niques such as finite differences or finite elements.
Most of the existing methods quantify the annual
variation of heat flow from a ground-coupled struc-

ture but give very little physical insight on how heat
is exchanged. Very few authors have attempted to
develop analytical solutions to earth-contact prob-
fems. Due to the mathematical complexity, the avail-
able analytical solutions are generally limited to sim-
plified models which do not consider a water table [9]
or permit the inclusion of envelope insulation [10].

This paper presents a more realistic model that
predicts the annual variation of the heat flow from a
rather general ground-coupled structure, sheds some
light on how heat flows from buildings to ground
and determines the major parameters that affect soil
temperature variation and the total amount of heat
flow from a building envelope in contact with earth.
In this paper, time varying quantities (such as the heat
flow) are characterized by a mean, an amplitude, and
a phase shift relative to the soil surface temperature. In
order to determine these parameters for each building
configuration (i.e. a building with slab-on-grade floor,
or a rectangular basement), the time-dependent heat
conduction equation for the temperature in the
ground is solved in each case using the ITPE technique
introduced in refs. {1, 11, 12]. The fact that steady-
periodic conditions are assumed allows the time-
dependent heat conduction equation to be trans-
formed into a Helmholtz-type equation independent
of time. This transformation is discussed in Section 2
of this paper. The general procedure for solving the
heat conduction equation is also described.

In Section 3, the two-dimensional periodic tem-
perature beneath a slab-on-grade floor is treated.
Also, the dependence of the total floor heat loss upon
key parameters is discussed.

Section 4 discusses the two dimensional steady-
periodic conduction solution around an insulated rec-
tangular basement. The heat loss from the walls and
the floor is determined and the effect of insulation
levels on the total heat loss is shown.
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a half width of ground-coupled building
[m]

A,,B,,C, general term in Fourier series
temperature expansion

A;, B, C, general term in Fourier series heat
flow expansion
water table depth [m]

¢ basement depth [m]

functions of one of the space coordinates

(K]

Fourier coefficients

ratio, hfk, [m ']

overall heat transfer conductance

[Wm?K™']

heat flux [Wm~}

complex heat flux amplitude, (1+1)

[Wm~]

soil thermal conductivity [Wm 'K ~']

distance from building center to a

boundary where soil temperature is

undisturbed [m]

total heat loss [Wm™']

complex total heat loss amplitude, (141)

Wm™']

Re real part of a complex number

temperature [K]

annual mean of soil surface temperature

K]

annual amplitude of soil surface

temperature variation [K]

complex temperature amplitude, K+1K

complex room air temperature

amplitude, K+i1K

A N Sy

(SHw)

S

-
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NOMENCLATURE

7,  complex water table temperature
amplitude, K+1K
J ,  complex soil surface temperature
amplitude, K+iK
time [s]
x,y  space coordinates [m].
Greek symbols

oy, Bm, coefficients defined in equation (11)
&, By, 7] coefficients defined in equation

@n

af,, Ba,.vs coefficients defined in equation
(23)

o complex variable defined in equation (4),
(141) [m]

Cos Yows Voo Uy €lgenvalues

LosAons Vs - complex eigenvalues

K, soil thermal diffusivity [m?s~']

0 complex temperature amplitude, (1+1i)
K]

o) angular frequency for annual cycle,

1.992 x 10~ "rad s~ .

Subscripts
f floor
s mean
t amplitude
wl walls
I zone (1)

1I zone (II)
111 zone (III).

2. GENERAL SOLUTION PROCEDURE

The time-dependent heat conduction equation in
an isotropic medium is given by the following equa-
tion [4]:

1 8T(r,1)
AT(r,t) = —
(r.7) Kk, Ot
where A is the Laplacian operator. Throughout this
section, A will be assumed to be given in the two-
dimensional Cartesian form, i.e.
é° 0"

M

The coordinates x and y are denoted by the vector
spacer (i.e.r = (x,})). Inequation (1), ¢ is time and «,
the soil thermal diffusivity. Note that under practical
conditions, the soil thermal properties are not quite
constant and are greatly complicated in the presence
of water [13]. A theory based on the assumption of
constant diffusivity can only give approximate results.

In steady-periodic conditions, the solution T(r,r)

of equation (1) can be found by applying the complex
temperature technique [4]. T(r, ?) is then in the form

T(r,1) = T(r) + Re [T (r) e']. @

In the above equation, T, is the mean of the periodic
temperature variation over the annual cycle and T,
is the complex amplitude of the annual temperature
fluctuations. A real amplitude and a phase shift can
be obtained by taking the modulus and the argument
of the complex value of T, respectively. The symbol
o represents the angular frequency of the annual cycle
and is equal to 1.992x 10 " rad s~

In a previous work [11], it was shown that both T,(r)
and Ty(r) can be deduced from a complex temperature
solution 7 (r) of the following Helmholtz equation:

AT (r) = 8T (r) 3)

e

with
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The boundary conditions specific to each problem have
to be considered to determine the solution 4 (r). The
boundary conditions also determine the manner by
which T, and 7, are deduced from 7. For the steady-
state component T, one additionally substitutes zero
for & in the expression for 7.

To solve equation (1) for each of the two ground-
coupling problems treated here, the following steps are
taken.

(1) The solution J (r) of the Helmholtz equation
(3) is found.

(2) The expressions for the steady-state temperature
T(r) and the complex temperature amplitude 7(r)
are deduced from the solution & (r) using appropriate
boundary conditions.

(3) Finally, the time-dependent temperature solu-
tion T{(r, #) of equation (1) is determined from equation

Q.

In this paper the first step is emphasized. It is then
relatively easy to carry out the remaining two steps.

3. INSULATED SLAB-ON-GRADE FLOOR

The complex temperature amplitude F (x, y) for an
insulated slab-on-grade floor configuration shown in
Fig. 1 is subject to the following equation:

AT =8T 4
with
T =9, fory=25
T =3, fory=0and x| >a
0T
~(37=H($'—.7i) fory = 0 and |x} <a.

To clarify the values of 7, F ,and 7, to be used in
the above equations, consider an example of a building
interior kept at 18°C throughout the year. The floor of
this building is adjacent to a soil surface with an annual
temperature fluctuation from 1 to 15°C. Beneath this
floor, there is a water table at a constant temperature
of 10°C.

For this example, the mean of the annual tem-
perature variation T, is the solution of equation (5)
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with § =0, 7, =10°C, 7, =8°C and 7, = 18°C.
The complex amplitude T is also a solution of equation
(5) but with the amplitudes 7, = 0°C, 4, = 7°C and
F; = 0°C. Therefore, the variation of the temperatures
(T w: T 1; F ;) at the soil boundaries determine the
manner by which 7, and 7, are obtained from the
formal expression for 4, the solution of equation (5).

To find the formal expression for 7 (x, y), we first
note that equation (5) is equivalent to the following
equation:

A9 =570 (6)
with
6=0 fory=5
0=20, fory=0and |x] > a
06
R = H(#—-6) fory=0and|x| <a
where
0(x,y) = T (x,y)— T, 0P
6,=9,~T,e®
6, =9,—F, e *(1-35/H). )

Note that for steady conditions (i.e. when é = 0) the
above transformation establishes 7, as the origin of
temperatures.

Now let us solve the Helmholtz equation stated in
equation (6) using the ITPE technique. Referring to
Fig. 1 and because of the symmetry around the axis
x = {, the temperature 6(x, y) needs to be determined
only in zones (I) and (II). The function f(y) denotes
the temperature profile along the surface x = —a. The
solution of equation (6) in zone (I) is

2 fe]
ol(xsy) = B Z

ne=1 Vn

sinv,y

v

) {? 0u[1~e ] 4y, £, e“'"‘”“)} ®

n

In zone (II), the temperature 8;,(x, ¥) is given by

T -8 T T
> H
H
Zone I Zone II Zone I
Tw b

Fi1G. 1. Slab-on-grade floor configuration.
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2.2 . coshv,x
Ou(x,y) = 3,,;1 Susinv,y = v
22 . sinh g, (b—y)
- a,,; (-1 CnCOS#nXW ©)
where
vo=s V=i +62)
b
S =L S()sinv,ydy
2n—)=n ,
n=T’ ,unz\/(”r%+52)
and
2 a 2 2
Hoi/#n + E Z fm.unvm/(ﬂn +vm)
C - m=1
" (H+ p, coth u,b)
The continuity of heat flux at the surface x = —a
gives the condition
00, 00y
E x=—a a ax xX=-—a (10)
or
2% , v, -2
Bn; sinv,) <v,,f,,— v;(),>— 5

sinh u,(b—y)

bd) 2 a0
X ’ tanh v, si — C -
n; v, tanhv,a f,sinv,y + a,.; w0, C, sinh b

In order to obtain the Fourier coefficients f,, let us
multiply the above equality by sinv,y (p=1,2,...)
and integrate the resultant equation over [0, 5]. After
rearrangement, it is found that the coefficients f, are
solutions of the following linear systems :

Jo=5+ 3 ol an

where

‘<

0,

~ ‘

1
% = v,(1+tanhv,a) [v

Al

2> Hoy,
+ - Z ’ ’ ’2 2
a,- (H+,un COth”nb)(un +vp)
and

4v,v,

Brnp = abv,(1 +tanh v,a)

=]

w2
X = .
n; (H +py, coth pb) (1 + v, ) (> +v7,)

As done in ref. [1] for the case of steady-state tem-
perature variation, the sum in equation (11) is trunc-
ated to N = 15 terms and the f,’s are determined by
using the Gauss—Jordan elimination method. Note
that the Fourier coefficients f, have complex argu-
ments for the solution 7, but they are real numbers
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for the solution T,. The profile f can be solved for as
exactly as desired depending on how many Fourier
coefficients f, are determined. This new technique is
more precise than the estimation technique originally
used in refs. [11, 12].

3.1. Soil temperature variation

Figure 2 shows the temperature distribution
beneath a slab floor of half width ¢ = 3 m and an
insulation such that A = 1 Wm~2°C~'. A water table
at T, =10°C is b =5 m below grade. Throughout
the year, the interior temperature is assumed to be
constant at T; = 18°C, while the soil surface tem-
perature fluctuates around a mean T, = 8°C with an
amplitude T, = 7°C. The soil thermal diffusivity is
taken to be x, = 6.45x 1077 m? s~!. The soil tem-
perature variations are illustrated for two different
dates of the year.

The summertime profile, when the soil surface tem-
perature is at its peak (here 15°C) is shown in Fig.
2(a). Throughout this paper, it will be assumed that
the soil surface temperature reaches its maximum on
15 July. For the floor configuration chosen in Fig. 2,
the water table acts as a heat sink for both the slab
floor and the soil surface since it has the lowest tem-
perature among the three surfaces during the sum-
mertime. However, the slab does not lose its entire
heat to the water table. In fact, part of this heat goes
to the soil surface through the slab edges.

In wintertime (around 15 January), the ground tem-
perature profile changes completely as shown in Fig.
2(b). Now, the soil surface receives heat from both the
water table and the slab floor since its temperature
has dropped to 1°C. At the water table surface, two
double points [1] appear (symmetric to each other).
These double points divide the water table into two
zones, a warm zone beneath the slab receiving heat
and a cold zone losing heat as noted in ref. [1].

It is clear that for the specific slab-on-grade case of
Fig. 2 the floor loses heat to both the soil surface
and the water table throughout the year. It is the
proportion of the heat lost to each surface that fluc-
tuates with time. In wintertime, the floor loses more
heat to the soil surface than to the water table. It is
the converse situation in summertime but the total
heat losses from the slab are less important during
this period.

Figure 3(a) shows the steady-state soil temperature
for the above case. These profiles represent the term
T, in equation (2). They are calculated from equations
(8) and (9) by settingd =0; 7, =18°C; 7, =10°C
and 7, = 8°C. The variations of the real part of the
term T, are shown in Fig. 3(b). It is determined from
the same equations (8) and (9) by letting ;=7 ,,
= 0°C and 7, = 7°C. Note that just below the floor
central area the real amplitude of the soil tem-
perature is almost zero, implying that at these
locations the temperature is nearly constant through-
out the year. The same applies for the zone of the
ground just above the water table.
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F1G. 2. Earth temperature isotherms beneath an insulated slab-on-grade floor with 7, = 17°C, T, = 8+
7 cos wt (°C), T,, = 10°C for: (a) summertime (15 July); (b) wintertime (15 January).

3.2. Total slab heat losses

The complex amplitude of the total floor heat losses
9(5) is obtained by integrating the complex heat flux
F(x) = h(T (x,0)— T ;) over [0, 8]

4 =
2(8) = 2akdT, e ~—h Y. C; (12)
n=1

with

S UV o | OmF 110)

2
Cn =:un0i coth ,unb/ﬂn_ Bm=‘ (}14_#:l coth ”:lb) .

Again the time-dependent total floor heat loss Q(¢)
is calculated from an equation similar to equation (2)

0(t) = 2(0) +Re [2(3) €. (13)

Figures 4(a) and (b) show the fluctuations of the
total floor heat losses Q(t) during one year for a slab
width 2a = 6 m with

K, =645x10""m?’s™!, k,=1Wm~'°C™!
T,=18°C, T,=8+7coswt(°C), T, = 10°C.
The effect of varying the water table depth is shown

for two floor insulation levels (h=1 W m 2°C~'in
Fig. 4(a) and £ = 5 W m~2°C~! in Fig. 4(b)). As one
could expect, the total floor heat loss decreases as the
insulation increases. Also, the phase lag between the
soil surface temperature and the total losses increases
as the insulation increases (i.e. # decreases) par-
ticularly when b = 5 m. In the case of » =1 m, the
water table has a damping effect on the floor heat loss
fluctuations. In fact, the amplitude of the variations
of Q(¢) decreases as b decreases while the annual mean
@, increases. This behavior is related to the fact that
the water table is at constant temperature (10°C).
Therefore, as b decreases the heat flow pattern from
the slab approaches that occurring for two parallel
planes at two different constant temperatures.

4. INSULATED RECTANGULAR BASEMENT

The model of Fig. 5 will be used to treat the rec-
tangular basement configuration. Along the bounding
surfaces x = + L, the soil temperature is undisturbed.
The expression of the complex amplitude of the undis-
turbed soil temperature is given by
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Fic. 3. Earth temperature isotherms beneath an insulated slab-on-grade floor with: (a) 7; = 17°C,
T, =8°C, T, = 10°C; (b) T, = T, = 0°C, T, = 7°C.
sinh 8y To solve the Helmholtz equation, equation (15), by
G — e T s
T(ELY =T =T sinh 66 the ITPE technique, we will determine the tem-
inh 5(b perature variation in zones (I), (II), and (III) as
+ 7, m_“__(_—.).'l (14) defined in Fig. 5. The temperature profiles at the sur-
sinh 8b faces x = —a and y = ¢ are functions of y and x,
In these conditions the complex temperature dis- respectively
.tribution 3" (x,y), around Fhe rectaggular basement T (~a,y) = ), c<y<b
is the solution of the following equation: i
an
AT =8*F (15)
g T(x.0)=¢g(x), —L<x< —a
By =H(7 -7 fory=candix|<a The separation of variables technique yields the
0T solution in zone {I)
i (T —T) fory<candix|=a 7 @ ‘ cosh v,x
T1(x,y) = =9 Y, fusinv,(y—c) “oshv a
I =9, fory=10and |x| > a =1 "
2 = (=1 sinh g, (y—¢)
F =T for|x|] =L Sy D
(M Ix] aan=‘ " cos‘t{”xsinhp:,(b—c)
T =T, fory=»5

where H; = hejk, and H, = hy/ke by and H,, are the
values of the air-to-soil conductance at the floor and
at the walls, respectively.

sinh i, (b—y)

sinh g, (b—c) as)

+g Y 4,cosp,x

n=1

In zone (III), the solution is
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FiG. 5. Rectangular basement configuration with finite water table level.
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by equation (19) leads to

© _ln__
T u(x,y) = (L a) Z ) ]smx,,(x+a)

f _Yp+ zanp n+ Zﬂnpgn (20)
, Sinhx(c~y)

+ a2 Z guSing(x+a) Lop

sinh %,¢
1
s1nh Lny 2 o . sinh{;(x+a) p/=— —— —— — _
X Gohye T e g C,sin{, Y snhti@=L) v;[tanh v,(a)+coth v,(L —a)]
=] N ’ 2 n[H‘/ /Mn+ﬂn w/#n Slnh” (b—C)]
2 . sinh{(x+L) [_ VpHnllts "
T L Dasinby e o (18) a, % [Hetp,coth i, (-0 +u,7)
where v By Ye ,
- (sinhv;,(L—a) = v;./w{tanhv,,a
o ) 2
n (b—C) vn—\/(‘n+6 )
+tanh [v;,(L—a)/Z]})]
nn
Xe =77 A= +6%)
(L—a) ﬂf a 2 1 Ya¥s
lu= ?; {n=J(2+8%) " (L-avltanhvia+cothvi(L—a)] yi +v;
n— 1 =2
o= O = i+
4 4.V, (a6 — ) (vh + 1,7 )0 + 1)
J‘b . ‘ vy[H;+ iy, coth iy, (b—¢)][tanh v,a+coth v,(L—a)]
.= sinv,(y—c)dy;
/ B FO) =ady The condition of heat flux continuity at the surface
a y = c is expressed by
gn = J_L g(x)siny,(x+a) dx 0T, T on
W lyme O |p=c
A = — —1)"{Hf /ﬂn+.un w/[.unSlnhﬂn(b C)]} ’ ¢
" He+py, coth pp(b—c) This condition yields a system of equations of the
L} 72 2 fom
_2(—1) fmvm#n/(vm +#n)
(b—0) =) He+p, coth p(b—c¢) gp =75 + Z oG G + Z B, fom (22)
Vo ) - sinhéc_ iy - Sinhé(d—c)
B =1 {‘/ W[sinhéb S R A where
1
sinh (b —c¢) %= ; T
== (YY) x,[coth y,c+cothy,(b—c)]
C, ’:2{71[1 (-1 <nhdb ] P » » B )
X I
. e 1
_(Cypg, Snbel % { xp[ )| e sinhx}(b—c)]
¥ sinh 8b
_ Z 1)n+pC CnXp 2 i (—l)ananp
b _ U= (" MHWT [+ ,C,fsinh i (a—L) B TR =0k g
" H, +{,coth{/(L— .
1+ {(L—a) —gri [1—(=D"x,Hu
£, tanh [{;(L—a)/2]/(, ¢ S Ha+ L coth L (L—a)l(xy +(07)
~coth {,(L—
le+c CcO hCn( a) gi _l)nxanC/C /sth,’,(L—a)
2§ D Anladn/ O L) ¢ S Ha+ 8 coth IL—a] G +12)

T (L—-a),2 Hu+{,cothli(L—a) "

2 & Oy ltanh[E—a)2)
AP 1+cncothcn(L—a)1(c:,2+x;)}

n=1

The Fourier coefficients f, and g, can be deter-
mined from the required continuity of heat flux along

o0

the surfaces x = —a and y = ¢. First, for x = —aflux g
A g, =Y,
continuity yields et
o7 T 19 AL f(L = DG + 1) G4 2
0x lie o 0x lie . A p[Hu 4, coth (L —a)][coth x,c +coth (b —¢)]

After a computation procedure similar to that fol- Be, = — 2 1 VimXp ]
lowed in the slab-on-grade section, the condition given = "~ (b—0) x[coth y,c+coth y,(b— )] v+
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The procedure developed for determining the slab-
on-grade solution is also used here. First, the Fourier
cocfficients f, and g, are determined by truncating
the sums in equation (20), and in equation (22) to
N =20 terms. A system of 2N equations with 2N
unknowns (f, fo,...,fx and g, gs...,95) is
obtained. After solving this system using the Gauss—
Jordan elimination method, the temperatures inside
zones (I), (II), and (III) are determined by sub-
stitution of the values of the coefficients f, and g, into
equations (16)—(18), respectively.

4.1. Soil temperature variation

Figure 6(a) shows the wintertime temperature pro-
file around a basement of width 2a =6 m and of
depth ¢ = 2 m. The interior basement temperature is
T; = 18°C, and the mean and the amplitude of the
annual soil surface temperature variation are
T, =8°C and T, = 7°C, respectively. A water table
at T,, = 10°C is b = 5 m below grade. The insulation
at the walls and the floor are such that A, = 0.2
Wm-2°C~'and 4, = 1 Wm~2°C~'. The soil thermal
diffusivity is x, = 6.45x 10°7 m? s~'. For this base-
ment configuration, the temperature along the wall
increases from 1°C (the wintertime soil surface tem-
perature) to about 11°C; meanwhile, the floor tem-
perature decreases from the central area (16°C) to the
edges (11°C). The wall loses heat mostly to the soil
surface but the floor heat loss goes entirely to the
water table.

Figure 6(b) illustrates the summertime temperature
variation for the above basement configuration. Near
the wall, the soil temperature decreases from 15°C
(the summertime soil surface temperature) to about
13°C. Just beneath the basement floor, the tem-
perature profile is similar to that observed in win-
tertime (Fig. 6(a)). This is to be expected since there
is a strong thermal interaction between the water table
and the center of the floor, which is not much affected
by the temperature variation with time occurring at
the soil surface.

4.2. Total heat loss calculations

The complex amplitude of the total heat losses
from the floor 2¢(5) and from the wall 2,,(6) are ob-
tained by integrating S(x) = (7 (x,c)—7;) and
Fu(y) = ha(T i~ T (ta,y)) over [—a,a] and [0, b],
respectively. It is found that

4 ] _1 n
2@ = —ohy )
and
2 X [—=(=D"
2:(8) = —hw Y [—%D},. (24)
n=1 n
with

HMT 31:9-K
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f (-1 l:y; coth y,(b—¢) 7
" [Het g coth p (b—0)] L
_ Hn P -
o sinh g (b—0) (b—C)mglqu,’ff’"]
and
1
D, = : i
[H, +{, coth [ (L—a)]
» [1—-(-1) ]C,,cothC,,(L—a)g_i_. cl
L sinh {(L—a)

Cn a ,(L—'a) 2 d (_l)nx"lCn
+ZJltanhC,,———2 (L—a)mgl C,f-f-x,’,f m}.

The time-dependent total heat losses from the base-
ment floor Oy(r) and from the basement wall Q,,(?)
are calculated using an equation similar to equation

@

0:(1) = 2;(0)+Re [2,(5) '] (25)

and

Qui(t) = 2,,(0) +Re [2,,(3) '], (26)

The same basement configuration as in Section 4.1
but with 4, =2 W m~? °C~"' is adopted here as the
base case to analyze the effect of the water table depth
and the insulation level of the walls and floor on the
total basement heat losses. The losses from the walls
and those from the floor will be analyzed separately.

4.2.1. Effect of water table depth. Figures 7(a) and
(b) show the annual variation of total heat losses from
the basement wall and basement floor, respectively. It
is clear that the effect of the water table on floor heat
loss is more significant than the effect on wall heat
loss. Decreasing the water table level increases the
mean annual floor heat loss but decreases the annual
fluctuation of total floor heat losses as was observed
earlier in the case of a slab-on-grade floor. For the
walls, only the amplitude of total heat loss is affected,
and only slightly, by water table depth.

4.2.2. Effect of wall insulation level. The wall insu-
lation level significantly affects both wall and floor
heat losses. For the wall, the mean and the amplitude
of total heat losses decrease with A, as shown in Fig.
8(a). For the floor, only the mean of annual total heat
loss is affected significantly by the wall insulation level,
as illustrated in Fig. 8(b). The amplitude is essentially
unaffected.

4.2.3. Effect of floor insulation level. Figure 9(a)
shows that the value of A; affects both the mean and
the amplitude of total floor heat losses. Note that the
phase lag between soil surface temperature and floor
heat loss increases with floor insulation level. Figure
9(b) indicates clearly that the value of A; has no sig-
nificant effect on the heat loss from walls.
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5. CONCLUSIONS

A detailed analysis of the heat exchanged between
soil and slab-on-grade floors and basements has been
carried out using the ITPE technique. The soil tem-
perature variation, the heat flux along each building
surface in contact with earth and the total amount of
heat flowing into or out of a building envelope is
determined in each case. Through parametric analy-
ses, many results are obtained. In particular, we have
shown that the isolation effect of the insulation is
marked by a time delay to outside fluctuations and
that in case of basements the floor has a high thermal
sensitivity to the wall insulation. This sensitivity is not
mutual since the walls have no significant response to
floor insulation.

Throughout this paper, the building envelope is
considered as a simple resistance with no capacity. As
a consequence, there was no differentiation between
inside and outside insulation placement. Further work
taking into account heat conduction inside the build-
ing envelope material is needed to determine the effect

of the insulation placement on heat transfer from
buildings to ground. The same work will allow evalu-
ation of the mass effect of the envelope material. The
ITPE procedure may be utilized to solve the heat
conduction equation in both earth and the building
envelope.
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APPLICATION DE LA TECHNIQUE ITPE A DES PROBLEMES BIDIMENSIONNELS
VARIABLES DE COUPLAGE AU SOL

Résumé—La procédure d’Estimation du Profil de Température Interzone (ITPE) est utilisée pour trouver

les solutions en séries analytiques bidimensionnelles des transferts thermiques variables entre le sol et les

semelles ou les fondations. La température non perturbée du sol est approchée par une fonction sinusoidale

du temps et la procédure ITPE est couplée avec la technique de la température complexe pour obtenir les

solutions périodiques établies dans les deux configurations. On traite analytiquement pour la premiére fois

I'influence de 'isolation et de la nappe d’eau a température fixée sur le comportement temporel des semelles
et des fondations.

ANWENDUNGEN DER ITPE-TECHNIK BEI INSTATIONAREN ZWEIDIMENSIONALEN
ERDBODEN-MODELLEN

Zusammenfassung—Die ITPE-Methode (Interzone Temperature Profile Estimation) wird angewandt, um
zwei-dimensionale analytische Reihen-Losungen fiir die zeitlich verdnderliche Warmeiibertragung zwischen
Erdboden und oberflichengleichen Béden oder Kellern zu ermittein. Die ungestérte Bodentemperatur wird
als sinusférmige Zeitfunktion angenidhert und die ITPE-Prozedur wird mit der komplexen Temperatur-
Technik verbunden, um die stetig-periodischen Losungen fiir beide Konfigurationen zu ermitteln. Der
EinfluB einer Wiarmeddmmung und einer wasserfithrenden Schicht konstanter Temperatur auf das zeitliche
Verhalten von oberflichengleichen Boden und von Kellern wird erstmalig analytisch behandelt.

HCITIOJIB30OBAHHUE METOJA OMIIT U1 PEHIEHWA HECTALIMOHAPHBIX
ABYMEPHBIX 3AJIAY TEIUIOOBMEHA OBLEKTOB C 3EMJIEN

Annotamss—MeTon onpeneneHns Mex30HanbHOro npoduns temnepatyp (OMIIT) ucnoassyerca mis

MOJiyYeHHs IBYMEPHBIX AaHAJTHTHYECKHX PCIUCHAA B BHAE PANOB [UIA 3a0a4 HECTAKOHAPHOIO TEmI006-

MEHa MeXIy 3eMJiell H HACTHIaMH M3 IUIHT Ha YPOBHE 3eMJIM WiIH mojaBajtamu. HeBosmymenHas temne-

paTypa NOYBbl aNMPOKCHMHPYETCS CHHYCOHJAIbHOH (yHkuMeidl Bpemenn. C MCHONb30BaHHEM MeTOA

OMIIT nony4enst CTAMOHAPHO-NEPHOAMYECKHE pElieHHs 1 0O0MX ciiydaeB. BriepBble aHaMTHYECKH

PacCMOTPEHO BJIHMAHHE H30JIALMH H TPYHTOBBIX BOJ C PHKCHPOBAHHON TeMIepaTypoil Ha HECTALIHOHAD-
HBIC XapaKTEPHCTHKH yKa3aHHBIX OOBEKTOB.



