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Abstract-The interzone tempemture profile estimation (ITPE) proeedure is used to find tw~dimensional 
analytical series solutions for the time-varying heat transfer between ground and slab-on-grade floors or 
basements. The undisturbed soil temperature is approximated as a sinusoidal function of time and the 
ITPE procedure is coupled with the complex temperature technique to derive the steady-periodic solutions 
for both configurations. The influence of insulation and of a fixed-temperature water table on the temporal 

behavior of slab-on-grade floors and basements is treated analytically for the first time. 

1. INTRODUCTION 

IN REF. [I], the temperature variation in the soil was 
analyzed when steady-state conditions were assumed. 
In this paper, another key parameter will be included 
in the formulation of the ground-coupling problems 
treated in ref. [I]. This key parameter is time. In fact, 
even though the building and water table tem- 
peratures are generally constant, the soil temperature 
varies si~i~cantly with time. As analyzed in refs. [2- 
5], the earth temperature variation with time can be 
closely approximated by a sinusoidal function at any 
below-grade depth. The obvious consequence of this 
temperature fluctuation is to complicate the heat flow 
direction from the ground-coupled structure since, 
depending on time and location, the soil surface can 
be warmer or colder than the building interior. The 
disturbance in the earth temperature introduced by a 
structure reaches a steady-periodic behavior after a 
few months from the date when the structure is built 
[6]. These first months constitute the ‘transient’ period 
of the building. The length of the transient period 
depends on many factors such as the size, mass and 
insulation of the building. The steady-periodic 
behavior is characterized by sinusoidal time variation 
of earth temperature and heat fluxes. In this paper, the 
steady-periodic behavior will be analyzed for annual 
fluctuations. However, the theory can be applied for 
any other period of time. 

Over a dozen methods for calculating heat transfer 
between buildings and ground are now available and 
have been reviewed by Sterling and Meixel [7] and 
Claridge 181. Virtually all of these methods are based 
on large computer programs using numerical tech- 
niques such as finite differences or finite elements. 
Most of the existing methods quantify the annual 
variation of heat flow from a ground-coupled struc- 

ture but give very little physical insight on how heat 
is exchanged. Very few authors have attempted to 
develop analytical solutions to earth-contact prob- 
lems. Due to the mathematical complexity, the avail- 
able analytical solutions are generally limited to sim- 
plified models which do not consider a water table [9] 
or permit the inclusion of envelope insulation [lo]. 

This paper presents a more realistic model that 
predicts the annual variation of the heat flow from a 
rather general ground-coupled structure, sheds some 
light on how heat flows from buildings to ground 
and determines the major parameters that affect soil 
temperature variation and the total amount of heat 
flow from a building envelope in contact with earth. 
In this paper, time varying quantities (such as the heat 
flow) are characterized by a mean, an amplitude, and 
a phase shift relative to the soil surface temperature. In 
order to determine these parameters for each building 
configuration (i.e. a building with slab-on-grade floor, 
or a rectangular basement), the time-dependent heat 
conduction equation for the temperature in the 
ground is solved in each case using the ITPE technique 
introduced in refs. 11, 11, 121. The fact that steady- 
periodic conditions are assumed allows the time- 
dependent heat conduction equation to be trans- 
formed into a Helmholtz-type equation independent 
of time. This transformation is discussed in Section 2 
of this paper. The general procedure for solving the 
heat conduction equation is also described. 

In Section 3, the two-dimensional periodic tem- 
perature beneath a slab-on-grade floor is treated. 
Also, the dependence of the total floor heat loss upon 
key parameters is discussed. 

Section 4 discusses the two dimensional steady- 
periodic conduction solution around an insulated rec- 
tangular basement. The heat loss from the walls and 
the floor is determined and the effect of insulation 
levels on the total heat loss is shown. 
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NOMENCLATURE 

a half width of ground-coupled building .F, complex water table temperature 

[ml amplitude, K+iK 
A,, B,, C,, general term in Fourier series Y, complex soil surface temperature 

temperature expansion amplitude, K+ iK 
Ai, BA. CA general term in Fourier series heat t time [s] 

flow expansion .? y space coordinates [ml. 
h water table depth [m] 

>, g 
basement depth [m] 
functions of one of the space coordinates Greek symbols 

WI %* Pm,p coefficients defined in equation (11) 
,f,, gn Fourier coefficients ai, /3iP, y,’ coefficients defined in equation 
H ratio, h/kp [m ‘1 (21) 
h overall heat transfer conductance c%:,, Bt, r,” coefficients defined in equation 

wrn-‘K-‘] (23) 
I heat flux [W mm’] 6 complex variable defined in equation (4), 
9 complex heat flux amplitude, (1 +i) (1 +i) [ml 

[Wm-‘1 i,, xn, v,, pLn eigenvalues 

k, soil thermal conductivity [W m ’ Km ‘1 i;, Xi, II:> PL:, complex eigenvalues 
L distance from building center to a n’s soil thermal diffusivity [m2 s- ‘1 

boundary where soil temperature is 0 complex temperature amplitude, (1 +i) 
undisturbed [m] Kl 

Q total heat loss [W mm’] w angular frequency for annual cycle, 
1 complex total heat loss amplitude, (1 + i) 1.992 x lo-’ rad SV’. 

[Wm-‘1 
Re real part of a complex number 

T temperature [K] Subscripts 

T, annual mean of soil surface temperature f floor 

RI S mean 

T, annual amplitude of soil surface t amplitude 
temperature variation [K] wl walls 

5 complex temperature amplitude. K+iK I zone (I) 
5, complex room air temperature II zone (II) 

amplitude. K+iK III zone (III). 

2. GENERAL SOLUTION PROCEDURE of equation (1) can be found by applying the complex 

The time-dependent heat conduction equation in 
temperature technique [4]. T(r, t) is then in the form 

an isotropic medium is given by the following equa- 
tion [4] : 

1 87-Q, t) 
Ai?. t) = ; 7 

5 

where A is the Laplacian operator. Throughout this 
section, A will be assumed to be given in the two- 
dimensional Cartesian form, i.e. 

2’ 8’ 

A=is’+&?. 

The coordinates x and y are denoted by the vector 
spacer (i.e. r = (.u.y)). In equation (I), t is time and ti, 
the soil thermal diffusivity. Note that under practical 
conditions, the soil thermal properties are not quite 
constant and are greatly complicated in the presence 
of water [ 131. A theory based on the assumption of 
constant diffusivity can only give approximate results. 

In steady-periodic conditions, the solution T(r. t) 

T(r, t) = T,(r) +Re [T,(r) e’““]. (2) 

In the above equation, T, is the mean of the periodic 
temperature variation over the annual cycle and Tt 
is the complex amplitude of the annual temperature 
fluctuations. A real amplitude and a phase shift can 
be obtained by taking the modulus and the argument 
of the complex value of T,, respectively. The symbol 
w represents the angular frequency of the annual cycle 
andisequalto1.992xlO~‘rads-‘. 

In a previous work [ 1 I], it was shown that both T,(r) 
and T,(r) can be deduced from a complex temperature 
solution F(r) of the following Helmholtz equation : 

AT(r) = S’F(r) (3) 

with 

tj= ‘w. J( > 4 
(4) 
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The boundary conditions specific to each problem have 
to be considered to determine the solution y(r). The 
boundary conditions also determine the manner by 
which T, and Tt are deduced from 9. For the steady- 
state component T,, one additionally substitutes zero 
for S in the expression for FT. 

To solve equation (1) for each of the two ground- 
coupling problems treated here, the following steps are 
taken. 

(I) The solution 9(r) of the Helmholtz equation 
(3) is found. 

(2) The expressions for the steady-state temperature 
T,(r) and the complex temperature amplitude T,(r) 
are deduced from the solution ZZr (r) using appropriate 
boundary conditions. 

(3) Finally, the time-dependent temperature solu- 
tion T(r, t) of equation (1) is determined from equation 

(2). 

In this paper the first step is emphasized. It is then 
relatively easy to carry out the remaining two steps. 

3. INSULATED SLAB-ON-GRADE FLOOR 

The complex temperature amplitude 5 (x,Y) for an 
insulated slab-on-grade floor confi~ration shown in 
Fig. 1 is subject to the following equation : 

with 

Lw=s29- (5) 

fory=b 

for y = 0 and 1x1 > a 

-=Ijr(g-gi) forY=Oandlxl<a. 
SY 

To clarify the values of Si, r i and FW to be used in 
the above equations, consider an example of a building 
interior kept at 18°C throughout the year. The floor of 
this building is adjacent to a soil surface with an annual 
temperature fluctuation from 1 to 15°C. Beneath this 
floor, there is a water table at a constant temperature 
of 10°C. 

For this example, the mean of the annual tem- 
perature variation T, is the solution of equation (5) 

with S = 0, y-, = IO”C, 5-, = 8°C and gi = 18°C. 
The complex amplitude Tt is also a solution of equation 
(5) but with the amplitudes FW = 0°C y, = 7°C and 
Fi = 0°C. Therefore, the variation of the tem~rat~s 
CT,,.; 5, ; Fi) at the soil boundaries determine the 
manner by which T, and T, are obtained from the 
formal expression for 9’“, the solution of equation (5). 

To find the formal expression for r (x, Y), we first 
note that equation (5) is equivalent to the following 
equation : 

with 

AtJ=S% (6) 

@=O 

8=6, 

ae 

fory=b 

fory=Oandixl>a 

-==(6-01) forY=Oandlxl<a 
ay 

where 

0(x, y) = I (x, y) - 9-w e6ry-@ 

(7) 

Note that for steady conditions (i.e. when S = 0) the 
above transformation establishes 9-w as the origin of 
temperatures. 

Now let us solve the Helmholtz equation stated in 
equation (6) using the ITPE technique. Referring to 
Fig. 1 and because of the symmetry around the axis 
x = 0, the temperature 0(x,y) needs to be determined 
only in zones (I) and (II). The function f(y) denotes 
the temperature profile along the surface x = -a. The 
solution of equation (6) in zone (I) is 

B,(x,y) = ; E F 
n-1 

X 
1 

? 0, [l -ev~(x+a)] +ynfn eWco) _ 

In zone (II), the temperature &(x, y) is given by 

-a 0fi a T 
f H 

>X 
! 
! 

Zone I / 

f ZcllL If I 
i 

TYf i b j 

Zone I 

(8) 

- - - ___& - - 
-- - y--- 

FIG. 1. Slab-on-grade floor configuration. 
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where 

~ = m-lb 
n 

2a ’ PA = &n’+s2) 

and 

The continuity of heat flux at the surface x 
gives the condition 

a4 af-4, - I I =- 
ax ._ ax _ 

= -a 

(10) 

or 

x 2 VA tanhvia f, sin v,y + i f p,,C,, 
sinh pA(b -y) 

n= I n- 1 sinhp:b ’ 

In order to obtain the Fourier coefficients fn, let us 
multiply the above equality by sin vPy @ = 1,2, . . .) 
and integrate the resultant equation over [0, b]. After 
rearrangement, it is found that the coefficients f, are 
solutions of the following linear systems : 

.f, = %I + F Pmsfm (11) 
m=, 

where 

1 
G$ = 

vi( 1 + tanh $a) 
V”e, 
vi 

+‘f H&J, 

a.=,(H+~:,coth~:b)(~c:,*+vpZ) 1 
and 

l-L, = 
4vpvm 

abv;( 1 + tanh vka) 

xf 2 

.=,(H+Ir:,coth~;b);;:2+v;)(p:2+v’)’ 

As done in ref. [l] for the case of steady-state tem- 
perature variation, the sum in equation (11) is trunc- 
ated to N = 15 terms and the fp’s are determined by 
using the Gauss-Jordan elimination method. Note 
that the Fourier coefficients f, have complex argu- 
ments for the solution T, but they are real numbers 

for the solution T,. The profile f can be solved for as 
exactly as desired depending on how many Fourier 
coefficients f, are determined. This new technique is 
more precise than the estimation technique originally 
used in refs. [ll, 121. 

3.1. Soil temperature variation 
Figure 2 shows the temperature distribution 

beneath a slab floor of half width a = 3 m and an 
insulation such that h = 1 W mm2 “C’. A water table 
at T, = 10°C is b = 5 m below grade. Throughout 
the year, the interior temperature is assumed to be 
constant at Ti = 18”C, while the soil surface tem- 
perature fluctuates around a mean T,,, = 8°C with an 
amplitude TV = 7°C. The soil thermal diffusivity is 
taken to be K, = 6.45 x lo-’ m2 s-‘. The soil tem- 
perature variations are illustrated for two different 
dates of the year. 

The summertime profile, when the soil surface tem- 

perature is at its peak (here 15’C) is shown in Fig. 
2(a). Throughout this paper, it will be assumed that 
the soil surface temperature reaches its maximum on 

15 July. For the floor configuration chosen in Fig. 2, 
the water table acts as a heat sink for both the slab 
floor and the soil surface since it has the lowest tem- 
perature among the three surfaces during the sum- 
mertime. However, the slab does not lose its entire 
heat to the water table. In fact, part of this heat goes 

to the soil surface through the slab edges. 
In wintertime (around 15 January), the ground tem- 

perature profile changes completely as shown in Fig. 
2(b). Now, the soil surface receives heat from both the 
water table and the slab floor since its temperature 
has dropped to 1°C. At the water table surface, two 
double points [l] appear (symmetric to each other). 
These double points divide the water table into two 
zones, a warm zone beneath the slab receiving heat 
and a cold zone losing heat as noted in ref. [I]. 

It is clear that for the specific slab-on-grade case of 
Fig. 2 the floor loses heat to both the soil surface 
and the water table throughout the year. It is the 
proportion of the heat lost to each surface that fluc- 
tuates with time. In wintertime, the floor loses more 
heat to the soil surface than to the water table. It is 
the converse situation in summertime but the total 
heat losses from the slab are less important during 
this period. 

Figure 3(a) shows the steady-state soil temperature 
for the above case. These profiles represent the term 
T, in equation (2). They are calculated from equations 
(8) and (9) by setting 6 = 0; Yi = 18°C; Y-, = 10°C 
and Y, = 8°C. The variations of the real part of the 
term Tt are shown in Fig. 3(b). It is determined from 
the same equations (8) and (9) by letting Yi = Y-, 
= 0°C and Y, = 7°C. Note that just below the floor 
central area the real amplitude of the soil tem- 
perature is almost zero, implying that at these 
locations the temperature is nearly constant through- 
out the year. The same applies for the zone of the 
ground just above the water table. 
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(a) 

(b) 

Distance from the center, m 

Distance from the center. m 

FIG. 2. Earth temperature isotherms beneath an insulated slab-on-grade floor with T, = 17°C T, = 8 + 
7 cos of (“C), r, = 10°C for: (a) summertime (15 July); (b) wintertime (15 January). 

3.2. Total slab heat losses 
The complex amplitude of the total floor heat losses 

9 (6) is obtained by integrating the complex heat flux 
9(x) = h(f((x, 0) -9-J over [0, b] 

with 

9(S) = 2ak,6Tw emsb - a 4h f C; 
n=, 

(12) 

2 DO PnbLfm/(v:+P3 c:, = L@i coth dtblfin - jj c 
m-l 

(H+ // coth /J b) . 

” n 

Again the time-dependent total floor heat loss Q(t) 
is calculated from an equation similar to equation (2) 

Q(t) = 9(0)+Re [2(6)e’“‘]. (13) 

Figures 4(a) and (b) show the fluctuations of the 
total floor heat losses Q(t) during one year for a slab 
width 2a = 6 m with 

K, = 6.45 x lo-’ mz SK’, k, = 1 W m-’ ‘C-l 

z = 18°C T, = 8+7cosot (“C), T, = 10°C. 

The effect of varying the water table depth is shown 

for two floor insulation levels (h = 1 W mP2 “C-l in 
Fig. 4(a) and h = 5 W m-’ ‘C-’ in Fig. 4(b)). As one 
could expect, the total floor heat loss decreases as the 
insulation increases. Also, the phase lag between the 
soil surface temperature and the total losses increases 
as the insulation increases (i.e. h decreases) par- 
ticularly when b = 5 m. In the case of b = 1 m, the 
water table has a damping effect on the floor heat loss 
fluctuations. In fact, the amplitude of the variations 
of Q(t) decreases as b decreases while the annual mean 
QS increases. This behavior is related to the fact that 
the water table is at constant temperature (1O’C). 
Therefore, as b decreases the heat flow pattern from 
the slab approaches that occurring for two parallel 
planes at two different constant temperatures. 

4. INSULATED RECTANGULAR BASEMENT 

The model of Fig. 5 will be used to treat the rec- 
tangular basement configuration. Along the bounding 
surfaces x = f L, the soil temperature is undisturbed. 
The expression of the complex amplitude of the undis- 
turbed soil temperature is given by 
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(b) 

Distance from the center, m 

Distance from the center. m 

FIG. 3. Earth temperature isotherms beneath an insulated slab-on-grade floor with: (a) Ti = 17”C, 
T, = S”C, ?-, = 10°C; (b) r, = Z-, = O”C, T, = 7°C. 

sinh Sy 
F(IGY) = S,(Y) = Kv&$-& 

+ ~ sinh 6(b -Y) 
f sinh 6b . (14) 

In these conditions the complex temperature dis- 
tribution y (x, Y), around the rectangular basement 
is the solution of the following equation : 

Ay=S=9” (15) 

d.9- 
-= H,(~-~i) 
8Y 

fory = cand 1x1 <a 

a&9- 
ax = H,l(~i -r) for Y < c and 1x1 = u 

9-==* for y = 0 and 1x1 > a 

9- = S,(Y) for 1x1 = L 

T=&Fw forY=b 

where & = h,/ks and H,, = h,/k,. hf and I& are the 
values of the air-to-soil conductance at the floor and 
at the walls, respectively. 

To solve the Helmholtz equation, equation (1.51, by 
the ITPE technique, we will determine the tem- 
perature variation in zones (I), (II), and (III) as 
defined in Fig. 5. The temperature profiles at the sur- 
faces x = -a and y = c are functions of y and x, 
respectively 

s(--a,Y) = f(Y), c<y<b 

and 

S&c) = g(x), -L < x < -a. 

The separation of variables technique yields the 
solution in zone {I) 

2” sinh&,(b-y) 
+ a c A,cospnx7.- 

n=t smh .L& (b - c) . 

In zone (III), the solution is 

(16) 
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(b) 

Month 

FIG. 4. Effect of water table depth on the annual variation of total slab heat losses 
(b) H = 5 mm’. 

(a) H= 1 m-‘; 

sinhv:(x+L) 2 u B, 

’ sinhvA(L-a) ’ (b-c)“=, v, 
1 -sinv,(y-cc) 

sinhvA(x+a) 

x sinhvk(a-L)’ 
(17) 

sinh~k(y-c) 2 

’ sinhX:(b-c) + (b--c).=, 
~ f fnsinv,(y-cc) The expression for the temperature in zone (II) 

takes the form 

ic 

(III) / 
i 

(1) 

T” 
I 

!b 

-- -i- _ _ 
-- -i-.- __ 

Y 

FIG. 5. Rectangular basement configuration with finite water table level. 
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2 O” [(-I)“--11 . 
~-l&Y) = (L-a)& “Z, 

by equation (19) leads to 
Xn sm xn (X + a) 

x sinhx;(c-y) 2 

sinh xhc + (L-u).=, n 
ji: 9 sin x&+aJ with 

sinh$,y 2 m sinh cA(x+a) 
1 

x_+;nT,Gsin5,y smh $,c smh [;(a-15) 
‘,’ = vJtanh v;(a) + coth vA(L - a)] 

+ f E D,sini,y 
sinh [A (X + L) v,~. [HrSi IP, + PL:, Y_, 1~~ sinh L,(b - 41 

sinh c&C-u) 
(18) 

“-I 
[H,+~:,coth~;(b-c)](v;+&*) 

where 

v”=&; v:, = J(v;+s’) 

xn=&i xi = J(xn2+6*) 

in=:; I:, = J(C+~*) 

/1 = (2n-l)n. 
” 2u ’ A = Jolnz+6*) 

f. = [f(y)sinv.(y-c)d*; 

g(x) sin X.(X + a) dx 

A 

n 

= _ (-1)"{H~~-i//1,+~~~_,/[~,sinh~~(b-c>l) 
H,+/~:,coth/~:(b-c) 

2(-l)” = fm%tPn/(v~*++~) -___ 
(b-c) m:, H,+&,cothp:,(b-c) 

- (-l)“Y-wg$ 1 
D 

n 

= [l-(-l)“lH,,~i/i,+~~C,/sinh~~(u-~) 
H,.,,+i;cothi;(L-a) 

+ 5,Y, tanh ML--a)/21/1L 
H,, + [; coth i;(L - a) 

OD (- 1)“x?L%/(x~*+C) 
(L~u)~:, H,,+[:,coth5;(L-a) . 

The Fourier coefficients f” and gn can be deter- 
mined from the required continuity of heat flux along 
the surfaces x = -a and y = c. First, for x = --a flux 
continuity yields 

as, ml1 
ax _ = ax._,’ (19) 

After a computation procedure similar to that fol- 
lowed in the slab-on-grade section, the condition given 

- (-lY$Y,{tanhvbu 

+ tanh [v;(L - u)/2]} >I 
fin/,= -2 1 xnvp 

(L-u) vj,[tanhvj+z+cothv~(L-a)] m 

4~5~: /a@ - c)(v; +P;* )(v:’ + ~3 
x v;[H,+~:,coth&,(b-c)][tanhv&z+cothv;(L-a)]’ 

The condition of heat flux continuity at the surface 
y = c is expressed by 

(21) 

This condition yields a system of equations of the 
form 

sp = 7; + i: @I.&I + i: B%,Jm (22) 
m=l m=L 

where 

1 

‘; = X;[coth$,c+cothx;(b-c)] 

X 1 
2 f W+"GLxp+ 2 m (-W&v,x, c,=, x;+c= (b-c& x;+v;* 

11 - (- l)“lxp& 
.=,[H,,+i:,cothi~(L-a)l(x,Z+1~*) 

+ ” 5 (- l)“x,i,i~C,/sinhi~(L--a) 
c.=,[H,,+i:,cothi:,(L-a)l(i:*+xp2) 
2 4) Cx,G tanh ML - 4Pl 

+FT’~~,(-1)“[H,,+i,cothi.(L-u)](5:2+X,2) 

&,p = f 
n=l 

4~,2x,x,lc(~--a)(i~2+X;)(i,z+X~2) 
’ x’JH,.,+[,coth<:,(L-u)][coth$,c+cothx;(b-c)] 

2 1 vnlxp 
B’s = -(b-c) x;[cothx;c+cothx;(b-c)] m 
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The procedure developed for determining the slab- 
on-grade solution is also used here. First, the Fourier 
coefficients fb and g,, are determined by truncating 
the sums in equation (20), and in equation (22) to 
N = 20 terms. A system of 2N equations with 2N 

unknowns (f ,, f2,. . , fN and g,, g2,. . . , gN) is 
obtained. After solving this system using the Gauss- 
Jordan elimination method, the temperatures inside 
zones (I), (II), and (III) are determined by sub- 
stitution of the values of the coefficients f, and gP into 
equations (16)-( 18), respectively. 

4.1. Soil temperature variation 
Figure 6(a) shows the wintertime temperature pro- 

file around a basement of width 2a = 6 m and of 
depth c = 2 m. The interior basement temperature is 
z = 18”C, and the mean and the amplitude of the 
annual soil surface temperature variation are 
T,,, = 8°C and TV = 7”C, respectively. A water table 
at T, = 10°C is b = 5 m below grade. The insulation 
at the walls and the floor are such that h,, = 0.2 
Wm-2”C-‘andh,= 1 Wm-*“C-‘.Thesoilthermal 
diffusivity is K~ = 6.45 x lo-’ m2 SK’. For this base- 
ment configuration, the temperature along the wall 
increases from 1°C (the wintertime soil surface tem- 
perature) to about 11°C ; meanwhile, the floor tem- 
perature decreases from the central area (16°C) to the 
edges (1l’C). The wall loses heat mostly to the soil 
surface but the floor heat loss goes entirely to the 
water table. 

Figure 6(b) illustrates the summertime temperature 
variation for the above basement configuration. Near 
the wall, the soil temperature decreases from 15°C 
(the summertime soil surface temperature) to about 
13°C. Just beneath the basement floor, the tem- 
perature profile is similar to that observed in win- 
tertime (Fig. 6(a)). This is to be expected since there 
is a strong thermal interaction between the water table 
and the center of the floor, which is not much affected 
by the temperature variation with time occurring at 
the soil surface. 

4.2. Total heat loss calculations 
The complex amplitude of the total heat losses 

from the floor .?&(a) and from the wall 9,,(a) are ob- 
tained by integrating Yf(x) = h,(F(x, c) -Fi) and 
Y&Y) = h,,(ri-y(ka.y)) over [--a,01 and [0,61, 
respectively. It is found that 

(23) 

and 

i&,,(6) = zh,, 2 I1 -;- ‘)“I *;, 
c 

(24) 
n=, ” 

with 

HMP 31:9-K 

(-1)” 
A’ = [H,+&cothp;(b-c)] 

P: coth A@ - 4 y, 
I 

PL, 

and 

1 

*’ = [H,,+<~coth[~(L-a)] 

The time-dependent total heat losses from the base- 
ment floor Qf(t) and from the basement wall Qw,(t) 
are calculated using an equation similar to equation 

(2) 

and 

Qf(t) = i&(O) + Re P&(S) e’“‘] (25) 

Qdt) = L%.,,(O) +Re L%,(6) e’““]. (26) 

The same basement configuration as in Section 4.1 
but with h,, = 2 W m-’ “C-’ is adopted here as the 
base case to analyze the effect of the water table depth 
and the insulation level of the walls and floor on the 
total basement heat losses. The losses from the walls 
and those from the floor will be analyzed separately. 

4.2.1. E,q^ect of water table depth. Figures 7(a) and 
(b) show the annual variation of total heat losses from 
the basement wall and basement floor, respectively. It 
is clear that the effect of the water table on floor heat 
loss is more significant than the effect on wall heat 
loss. Decreasing the water table level increases the 
mean annual floor heat loss but decreases the annual 
fluctuation of total floor heat losses as was observed 
earlier in the case of a slab-on-grade floor. For the 
walls, only the amplitude of total heat loss is affected, 
and only slightly, by water table depth. 

4.2.2. Efect of wall insulation level. The wall insu- 
lation level significantly affects both wall and floor 
heat losses. For the wall, the mean and the amplitude 
of total heat losses decrease with h,, as shown in Fig. 
8(a). For the floor, only the mean of annual total heat 
loss is affected significantly by the wall insulation level, 
as illustrated in Fig. 8(b). The amplitude is essentially 
unaffected. 

4.2.3. Effect of Joor insulation level. Figure 9(a) 
shows that the value of hf affects both the mean and 
the amplitude of total floor heat losses. Note that the 
phase lag between soil surface temperature and floor 
heat loss increases with floor insulation level. Figure 
9(b) indicates clearly that the value of hf has no sig- 
nificant effect on the heat loss from walls. 
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FIG. 6. Ear&h temperature isothe~s around an insulates basement with T, = 18°C T, = S+ 7 cos wt (“C), 
T, = lo”C, HF = 1 m-l, If,, = 0.2 m-’ for: (a) wintertime (15 January); (b) summertime (15 July). 
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FIG. 7. Effect of water table depth on the annual variation of total heat losses from : (a) basement wall ; 
(b) basement floor. 
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FIG. 8. EffTect of wall insulation on the annual variation of total heat losses from: (a) basement wall; 
(b) basement floor. 
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(a) 

FIG. 9. Effect of floor insulation on the annual variation of total heat losses from: (a) basement floor; 
(b) basement wall. 

5. CONCLUSIONS 

A detailed analysis of the heat exchanged between 
soil and slab-on-grade floors and basements has been 
carried out using the ITPE technique. The soil tem- 
perature variation, the heat flux along each building 
surface in contact with earth and the total amount of 
heat flowing into or out of a building envelope is 
determined in each case. Through parametric analy- 
ses, many results are obtained. In particular, we have 
shown that the isolation effect of the insulation is 
marked by a time delay to outside fluctuations and 
that in case of basements the floor has a high thermal 
sensitivity to the wall insulation. This sensitivity is not 
mutual since the walls have no significant response to 
floor insulation. 

Throughout this paper, the building envelope is 
considered as a simple resistance with no capacity. As 
a consequence, there was no differentiation between 
inside and outside insulation placement. Further work 
taking into account heat conduction inside the build- 
ing envelope material is needed to determine the effect 

of the insulation placement on heat transfer from 
buildings to ground. The same work will allow evalu- 
ation of the muss e@xt of the envelope material. The 
ITPE procedure may be utilized to solve the heat 
conduction equation in both earth and the building 
envelope. 
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APPLICATION DE LA TECHNIQUE ITPE A DES PROBLEMES BIDIMENSIONNELS 
VARIABLES DE COUPLAGE AU SOL 

R&m&La procedure d’Estimation du Profil de Temperature Interzone (ITPE) est utilisee pour trouver 
les solutions en series analytiques bidimensionnelles des transferts thermiques variables entre le sol et les 
semelles ou les fondations. La temperature non perturb&e du sol est approchire par une fonction sinusoidale 

du temps et la procedure ITPE est couplee avec la technique de la temperature complexe pour obtenir les 
solutions periodiques etablies dans les deux configurations. On traite analytiquement pour la premiere fois 
l’influence de l’isolation et de la nappe d’eau a temperature fix&e sur le comportement temporel des semelles 

et des fondations. 

ANWENDUNGEN DER ITPE-TECHNIK BEI INSTATIONAREN ZWEIDIMENSIONALEN 
ERDBODEN-MODELLEN 

Zusammenfassung-Die ITPE-Methode (Interzone Temperature Profile Estimation) wird angewandt, urn 
zwei-dimensionale analytische Reihen-Liisungen fur die zeitlich verlnderliche Warmeiibertragung zwischen 
Erdboden und oberfllchengleichen Bidden oder Kellern zu ermitteln. Die ungestorte Bodentemperatur wird 
als sinusformige Zeitfunktion angenlhert und die ITPE-Prozedur wird mit der komplexen Temperatur- 
Technik verbunden, urn die stetig-periodischen Losungen fur beide Konfigurationen zu ermitteln. Der 
Einflu5 einer Wlrmedammung und einer wasserfiihrenden Schicht konstanter Temperatur auf das zeitliche 

Verhalten von oberlhichengleichen Boden und von Kellern wird erstmalig analytisch behandelt. 

MCIIOJIb30BAHME METO,& OMI-IT &JIR PEIIIEHMR HECTAHHOHAPHMX 
ABYMEPHbIX 3A&49 TEI-IJIOOBMEHA 06bEKTOB C 3EMJIEH 

IiIIIIOTawMeTOA OnpeAeneHan hiexc3oHanbHoro npO&ina rehmeparyp (OMIIT) ucnonbsyercn jura 
nOJiyYeHHK AByMepHbIX aHUHTHYeCKIiX pelIIeHHii B BBAe pWOS AJIll 3aAa'I HeCTaUHOHapHOrO rennoo6- 
MeHa MemAy 3emeii H HaminaMH ~3 ILJIHT Ha ypoeHe 3ebfnH mu nonsanahni. Herios~ymemran rehme- 
paTypa IlOYBbI aIT,TpOKCHMHpyeTCa CHHyCOHAaAbHOii +yHKUtieii BpeMeHH. c HCnO,‘b30BaHWeM MeTOAa 

OMIIT nonyqesbi CTauHoHapHo-nepwo~‘lecKwe pemerian nnn 06oax cnyraea. Bnepsbre arianurmrecxu 
paccMorpea0 BminHHe w3onanmi H ~~~HTOBUX BOA c @wxcwpoeauuofi rebmeparypoi iia riecranuonap- 

HbIeXapaKTepHCTIiKByKa3aHHbIXO6%eKTOB. 


